华泰证券认为,金融行业数字化程度领先,拥有数据富矿,有望成为AI大模型率先落地的垂直领域之一。应用端,我们看到生成式和理解式大模型在银行、保险、资管、投研、投顾等多个细分领域正在落地或拥有潜在落地场景,帮助金融机构降本增效。
全文如下
华泰 | 电子:AI大模型 金融—掘金行业数据富矿
(资料图片仅供参考)
金融行业数字化程度领先,拥有数据富矿,有望成为AI大模型率先落地的垂直领域之一。应用端,我们看到生成式和理解式大模型在银行、保险、资管、投研、投顾等多个细分领域正在落地或拥有潜在落地场景,帮助金融机构降本增效。
核心观点
金融行业坐拥数据富矿,有望成为AI大模型率先落地的垂直领域之一
近期,多家金融机构、金融服务机构发布其AI大模型:彭博发布支持金融领域的自然语言处理(NLP)任务的BloombergGPT,中国农业银行推出类ChatGPT的大模型应用ChatABC,中国工商银行发布了基于昇腾AI的金融行业通用模型。我们认为垂直行业的高价值量数据对于AI大模型的训练和垂直领域应用至关重要,金融行业数字化程度领先,拥有数据富矿,有望成为AI大模型率先落地的垂直领域之一。应用端,我们看到生成式和理解式大模型在银行、保险、资管、投研、投顾等多个细分领域正在落地或拥有潜在落地场景,帮助金融机构降本增效。
银行:大模型助力数据洞察能力提升,赋能高质量顾问式金融服务
在银行领域,理解式大模型可以用在信贷风险管理、智能获客和产品识别等场景,通过提升银行的数据洞察理解能力,来更好地识别客户需求以及评估客户信用风险。例如,英伟达和德意志银行合作测试Financial Transformers (Finformers)大模型,能够从非结构化数据中提取关键信息,以提供早期风险预警信号。度小满的智能征信中台将LLM、图算法应用在征信报告的解读上。生成式大模型则可提高客户服务质量,智能客服既能与用户进行多轮对话,还能提出具体可行的解决方案。例如,中国工商银行发布了AI金融行业通用模型,智能客服在识别客户来电诉求和情绪的准确率上有显著提升。
投研:“全能助理”辅助信息了解、提炼和挖掘,实现研报自动生成
在投资研究领域,大模型可以成为投研从业者的“全能助理”。理解式大模型不仅可以辅助了解国内外的宏观政策、行业信息、公司和产品信息,并将关键信息进行抽取与提炼,还能通过对海量非传统数据进行挖掘来发现另类投研因子。生成式大模型则能实现研报的自动生成和翻译。
投顾:全方位分析客户需求,自动化定制化投资建议
在投资顾问领域,大模型不仅能充分利用自有内容资源,还能帮助全方位分析客户需求和市场趋势,提供自动化的投资建议。比如,同花顺应用LLM来构造合规、准确的投顾助手,通过Double-Check、多轮对话等模式,消除对话中的歧义、更好锁定投资者意图,从而准确了解用户画像来设定投资目的及风险承受度,并提供自动化的投资建议。摩根士丹利已经接入OpenAI,充分挖掘自身庞大的研究资源和数据库,为财富管理顾问提供帮助。
财经新闻:理解背后的市场“情绪”,辅助金融资讯写作
在财经新闻领域,理解式大模型帮助理解和判断财经新闻文章中的情感走向,生成式大模型助力更准确的金融问答和资讯写作。例如,彭博社近期发布的BloombergGPT得益于大规模金融垂直领域的文件、行业新闻、社交媒体等文本数据集的训练,能够理解财经新闻背后的市场“情绪”,辅助金融资讯写作,这解决了通用NPL模型在金融领域应用的痛点。
风险提示:AI及技术落地不及预期;本研报中涉及到未上市公司或未覆盖个股内容,均系对其客观公开信息的整理,并不代表本研究团队对该公司、该股票的推荐或覆盖。